Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(23): e2220948120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: covidwho-20236312

RESUMEN

The antiviral benefit of antibodies can be compromised by viral escape especially for rapidly evolving viruses. Therefore, durable, effective antibodies must be both broad and potent to counter newly emerging, diverse strains. Discovery of such antibodies is critically important for SARS-CoV-2 as the global emergence of new variants of concern (VOC) has compromised the efficacy of therapeutic antibodies and vaccines. We describe a collection of broad and potent neutralizing monoclonal antibodies (mAbs) isolated from an individual who experienced a breakthrough infection with the Delta VOC. Four mAbs potently neutralize the Wuhan-Hu-1 vaccine strain, the Delta VOC, and also retain potency against the Omicron VOCs through BA.4/BA.5 in both pseudovirus-based and authentic virus assays. Three mAbs also retain potency to recently circulating VOCs XBB.1.5 and BQ.1.1 and one also potently neutralizes SARS-CoV-1. The potency of these mAbs was greater against Omicron VOCs than all but one of the mAbs that had been approved for therapeutic applications. The mAbs target distinct epitopes on the spike glycoprotein, three in the receptor-binding domain (RBD) and one in an invariant region downstream of the RBD in subdomain 1 (SD1). The escape pathways we defined at single amino acid resolution with deep mutational scanning show they target conserved, functionally constrained regions of the glycoprotein, suggesting escape could incur a fitness cost. Overall, these mAbs are unique in their breadth across VOCs, their epitope specificity, and include a highly potent mAb targeting a rare epitope outside of the RBD in SD1.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Infección Irruptiva , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Epítopos , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Antivirales
2.
Viruses ; 14(7)2022 07 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1939012

RESUMEN

Pre-existing antibodies that bind endemic human coronaviruses (eHCoVs) can cross-react with SARS-CoV-2, which is the betacoronavirus that causes COVID-19, but whether these responses influence SARS-CoV-2 infection is still under investigation and is particularly understudied in infants. In this study, we measured eHCoV and SARS-CoV-1 IgG antibody titers before and after SARS-CoV-2 seroconversion in a cohort of Kenyan women and their infants. Pre-existing eHCoV antibody binding titers were not consistently associated with SARS-CoV-2 seroconversion in infants or mothers; however, we observed a very modest association between pre-existing HCoV-229E antibody levels and a lack of SARS-CoV-2 seroconversion in the infants. After seroconversion to SARS-CoV-2, antibody binding titers to the endemic betacoronaviruses HCoV-OC43 and HCoV-HKU1, and the highly pathogenic betacoronavirus SARS-CoV-1, but not the endemic alphacoronaviruses HCoV-229E and HCoV-NL63, increased in the mothers. However, eHCoV antibody levels did not increase following SARS-CoV-2 seroconversion in the infants, suggesting the increase seen in the mothers was not simply due to cross-reactivity to naively generated SARS-CoV-2 antibodies. In contrast, the levels of antibodies that could bind SARS-CoV-1 increased after SARS-CoV-2 seroconversion in both the mothers and infants, both of whom were unlikely to have had a prior SARS-CoV-1 infection, supporting prior findings that SARS-CoV-2 responses cross-react with SARS-CoV-1. In summary, we found evidence of increased eHCoV antibody levels following SARS-CoV-2 seroconversion in the mothers but not the infants, suggesting eHCoV responses can be boosted by SARS-CoV-2 infection when a prior memory response has been established, and that pre-existing cross-reactive antibodies are not strongly associated with SARS-CoV-2 infection risk in mothers or infants.


Asunto(s)
Formación de Anticuerpos , COVID-19 , Coronavirus Humano 229E , Infecciones por Coronavirus , Coronavirus Humano OC43 , Anticuerpos Antivirales , COVID-19/epidemiología , Infecciones por Coronavirus/inmunología , Reacciones Cruzadas , Femenino , Humanos , Lactante , Kenia/epidemiología , SARS-CoV-2
3.
Cell Rep ; 35(8): 109164, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1227990

RESUMEN

A major goal of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine efforts is to elicit antibody responses that confer protection. Mapping the epitope targets of the SARS-CoV-2 antibody response is critical for vaccine design, diagnostics, and development of therapeutics. Here, we develop a pan-coronavirus phage display library to map antibody binding sites at high resolution within the complete viral proteomes of all known human-infecting coronaviruses in patients with mild or moderate/severe coronavirus disease 2019 (COVID-19). We find that the majority of immune responses to SARS-CoV-2 are targeted to the spike protein, nucleocapsid, and ORF1ab and include sites of mutation in current variants of concern. Some epitopes are identified in the majority of samples, while others are rare, and we find variation in the number of epitopes targeted between individuals. We find low levels of SARS-CoV-2 cross-reactivity in individuals with no exposure to the virus and significant cross-reactivity with endemic human coronaviruses (CoVs) in convalescent sera from patients with COVID-19.


Asunto(s)
COVID-19/inmunología , Epítopos/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Proteínas Virales/inmunología , Adulto , Anciano , Anticuerpos Antivirales/inmunología , Sitios de Unión de Anticuerpos , COVID-19/virología , Técnicas de Visualización de Superficie Celular , Coronavirus/inmunología , Reacciones Cruzadas , Femenino , Células HEK293 , Humanos , Inmunidad , Masculino , Persona de Mediana Edad , Proteínas de la Nucleocápside/inmunología , Poliproteínas/inmunología , Serología , Adulto Joven
4.
Cell ; 184(11): 2927-2938.e11, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1213071

RESUMEN

Defining long-term protective immunity to SARS-CoV-2 is one of the most pressing questions of our time and will require a detailed understanding of potential ways this virus can evolve to escape immune protection. Immune protection will most likely be mediated by antibodies that bind to the viral entry protein, spike (S). Here, we used Phage-DMS, an approach that comprehensively interrogates the effect of all possible mutations on binding to a protein of interest, to define the profile of antibody escape to the SARS-CoV-2 S protein using coronavirus disease 2019 (COVID-19) convalescent plasma. Antibody binding was common in two regions, the fusion peptide and the linker region upstream of the heptad repeat region 2. However, escape mutations were variable within these immunodominant regions. There was also individual variation in less commonly targeted epitopes. This study provides a granular view of potential antibody escape pathways and suggests there will be individual variation in antibody-mediated virus evolution.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Epítopos/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Algoritmos , COVID-19/terapia , COVID-19/virología , Línea Celular , Biblioteca de Genes , Humanos , Inmunización Pasiva , Mutación , Dominios Proteicos , SARS-CoV-2/genética , Programas Informáticos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Sueroterapia para COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA